Spark image

Intermolecular forces


Forces within materials

All materials have internal forces that hold the individual molecules together to form a solid. (You should realise that all these forces are types of the basic electromagnetic force.) The forces in solids are of four types:

(a) ionic - this is the electrostatic attraction of two oppositely charged ions and occurs in crystals such as sodium chloride.

(b) covalent - this force results from electrons being shared between the shells of adjacent atoms as in diamond, silicon and methane.

(c) metallic - this force is due to the free electron cloud that exists in metals such as copper. The electrons move freely between the atoms and are not fixed to any pair of atoms as they are in the covalent bond.

(d) van der Waals - these are electric dipole forces formed by the electron cloud and the nucleus; they operate in all matter and are responsible for the attractive force between molecules in a gas. They can be observed in solid neon, simply because none of the others operate there.

These forces can give an explanation of some of the elastic and thermal properties of a material.


Figure 1 shows how the potential energy of two molecules and the force between them changes with their separation. The force at any point is found from F = -dV/dr, where V is the potential energy.

Two forces act between the molecules:
(a) the repulsive force which predominates at short distances
(b) the attractive force which predominates at long distances

You can see from the graph that when the molecules are close to each other the repulsive force predominates, while at greater distances the attractive force is larger. The resultant force is:
(a) repulsive from O to M,
(b) attractive from M to B but increasing with distance, and
(c) attractive from B to infinity but decreasing with distance.

There is a position where the two forces balance, shown by M on the graph. This is the equilibrium position for molecules in the solid.

The potential energy is a minimum at this point (as would be expected). Any disturbance from this position would produce a force tending to return the molecules to M. The force of attraction between the molecules increases as the molecules are separated from M to B.

The breaking point is at B, since beyond this point the force of attraction decreases with increasing separation.

For a molecule to be completely separated from its neighbour it must gain an amount of energy F, represented by CM on the diagram. The latent heat of vaporisation for the two molecules is CM when there is no residual attractive force. This length also represents the latent heat of vaporisation for the whole material.

In a solid the distance OM is some 2-3x10-10 m and you can see that around this point the force between the molecules varies approximately linearly with distance.

The curves also explain the expansion of a solid with increasing temperature. If an amount of energy F is added to a molecule at C its potential energy will rise to the level C', the energy appears as kinetic and potential energy and the molecule oscillates about G. However, since the potential energy - distance curve is not symmetrical this centre of oscillation is further from O than from M.

This results in a mean separation of the molecules - that is, an expansion.

The oil drop experiment

We have considered the forces that exist in a solid between adjacent molecules and have therefore assumed the existence of these molecules. The following simple experiment can be used to give a rough idea of the size of a molecule.

The radius r of a small drop of oil is found and the volume of the drop calculated. The drop is now placed on the surface of some dust-covered water and the drop spreads out into a roughly circular patch, the diameter of which is measured, and hence the radius R is found. This patch must be at least one molecule thick, but clearly cannot be less. Now the volume of the original drop is the same as that of the film; therefore, if h is the thickness of the film,

4/3πr3= πR2h


and from this the thickness of the film can be found. Therefore the size of a molecule of oil must be equal to or less than the thickness of the film.

Results from this experiment suggest the diameter of a molecule of oil to be about 10-9 m, and this has been confirmed by X-ray diffraction.

 

A VERSION IN WORD IS AVAILABLE ON THE SCHOOLPHYSICS USB
 
 
 
 
© Keith Gibbs