PARTICLES AND FIELDS
(a) MAGNETIC FIELDS
When a charged particle of mass m
moves in a magnetic field of flux density B at a velocity v there is a force on it. If the field is at
right angles to the motion of the particle this force is:
F = Bqv where q is the charge on the particle
This force is always at right angles to the motion and so
the particle is deflected into a circle of radius R.
Therefore:
Magnetic force: Bqv = mv2/R
Example problem
A proton (mass 1.66 x 10-27 kg) with a charge to mass ratio (q/m) of 9.6x107 Ckg-1 moves in a circle in a magnetic field of flux density 1.2T at 4.5x107 ms-1 .
Calculate:
(a) the radius of the circle
(b) the kinetic energy of the proton
(a) R = mv2/Bqv = mv/Bq = 4.5x107/(1.2x9.6x107) = 0.39 m
(b) kinetic energy = ½ mv2 = 0.5x1.66x10-27x(4.5 x 107)2 = 1.68x10-12 J = 10.5 MeV
(b) ELECTRIC FIELDS
A particle of charge +q in an electric field of intensity E
experiences a force Eq towards the negative plate .
If the plates are distance d apart
and the p.d between them is V volts then E = V/d and the force is given by:
Electrostatic force: Force = Eq = Vq/d
Unlike a magnetic
field, in an electric field a charged particle at rest will still feel a
force.
Example problem
A proton passes though an accelerating gap in a particle accelerator. If the gap is 0.4 cm wide and the p.d between the two sides is 50 kV calculate:
(a) the force on the proton
(b) the acceleration of the proton
Force = qV/d = [1.6x10-19x50x103]/0.4x10-2 = 2x10-12 N
Acceleration = F/m = 1.2x1015 ms-2
A VERSION IN WORD IS AVAILABLE ON THE SCHOOLPHYSICS USB