On this page we will consider the flow of heat down a bar, assuming that it is perfectly lagged so that no heat escapes from the sides. All the heat energy entering one end of the bar eventually leaves the other end; this is known as parallel heat flow. The drop in temperature is linear.
With an unlagged bar, however, heat is lost and so
the rate of fall of temperature varies down the bar.
The temperature variation and the heat
flow are shown for both bars in Figure 2(a) and (b).
Note that this is the flow of heat
down a bar when steady state has been reached. Initially the temperature distribution will
depend on the rate at which a pulse of heat energy can travel down the bar, and this depends
on the specific heat capacity of the material and not the thermal conductivity.
(i) If one end of a metal rod is heated the
atoms gain energy and their vibrations increase. This energy is then passed on to the other
atoms and to the numerous free electrons in the metal. Since the electrons are very small they
can travel rapidly around within the specimen, transferring their energy by collision to other
electrons and other atoms. In metals, therefore, heat is carried mainly by the motion of these
free electrons, although some energy is of course transferred by interatomic vibration.
The
conductivity of metals does vary with temperature and at very low temperatures the lattice
vibrations carry the heat energy more easily than the free electrons do.
In non-metallic solids there are virtually no free electrons, and therefore the only way that heat can travel through the specimen is by the direct transfer of energy from one atom to another. Debye suggested that the energy was transferred by some sort of elastic wave propagated through the specimen. These waves are sometimes called phonons, and travel with the speed of sound through the solid. Wiedmann and Franz showed that the ratio of thermal conductivity to electrical conductivity is the same for all metals, and this supports the view that a good conductor of electricity is also a good conductor of heat.
Consider a bar made of two materials both of the same cross-sectional area A, one a good conductor and the other a poor conductor, and assume that the bar is perfectly lagged, so that no heat leaves its sides (Figure 4).
The heat flowing into one end of the bar is
equal to that flowing out the other end, and so the rate of flow of heat in one material is equal to
that in the other material. Therefore it the temperature of one end of the bar is θ1 and that of
the other end θ2, and if the temperature of the join is
θ, then:
For the good conductor:
dH/dt = [-k1A (
θ1- θ)]/L1
For the poor conductor: dH/dt = [-k2A (θ - q)]/L2
where
k1 and k2 are the thermal conductivities of the two materials and L1 and L2 are the lengths of the
two sections of the bar.
Since the rates bf heat flow are equal, we have:
[-k1A (θ1-
θ)]/L1 = [-k2A (θ - θ2)]/L2
So if the lengths are equal, the temperature drop through the
good conductor will be much less than that through the poor conductor.